
46 The Delphi Magazine Issue 44

Under Construction:
Delphi 4 And Java
by Bob Swart and Hubert Klein Ikkink

Last month we explored CORBA,
and I claimed that CORBA was a

good platform-independent and
language-independent method of
communication. This time, we’ll
focus specifically on protocols for
communicating between Delphi 4
and Java, starting with CGI and
sockets. Next month we’ll return to
CORBA again.

BobNotes
First, let’s define the ‘business
case’ for this article. In these busy
times, I can no longer rely solely on
my memory to keep appointments,
deadlines and my sanity at the
same time. Instead, I find myself
making notes on small pieces of
paper (and losing them almost
immediately). Since I’m at least
near a computer at all times (if not
on top of one), why not make use of
this potential and create an appli-
cation that can present my latest
list of Things To Do at all times?

Given that I have at least four
‘working’ machines (one at work,
one at home, one in the attic and
one in the garage), I need a way to
share my To Do notes on all the

machines. And the only
network they have in
common is, of course,
the internet.

The standalone ver-
sion of the To Do notes,
which I have called
BobNotes, can be seen in
Figure 1. I could use it to
store diary notes like
deadlines, dates for
masterclasses, etc.

So, this month, we’ll
not only focus on a
Delphi application, but also imple-
ment a small Java Applet to login,
show and/or update simple text
(my To Do notes). The Java Applet,
running inside any JDK 1.1 compli-
ant internet browser (like
Netscape Navigator 4.x or Internet
Explorer 4.x), communicates with
the Delphi server-side application
that stores the To Do notes for
every user.

Mr.Haki’s Java Applet
The Java Applet is made by Hubert
A Klein Ikkink (aka Mr.Haki) using
JBuilder 2, and requires a JDK 1.1
compliant browser. Java Applets
cannot store anything on the
current (local) client machine, so

they rely on server-side
applications as storage
devices for our To Do
notes.

The Applet consists of
basically three different
screens: a login screen, a
screen to show the notes
and a screen to add new
notes. So when a user
loads the HTML page
with the Java Applet he
or she must first log in
using a username and
password. Besides filling
in the username and
password the user can
also choose the commu-
nication protocol to be

used by the Applet. Today we will
look at communication between
the Java Applet and server-side
Delphi applications with CGI and
with sockets (so we won’t see the
actual implementation of the Java
Applet: email Hubert at hubert@
bolesian.nl if you want a copy of
the Applet source code).

After selecting the communica-
tion protocol the user can get
notes from the server or add new
notes and save them to the server.
Figures 3 and 4 show the two
options available. Figure 4 shows
the result after pressing the Get
data button.

Dr.Bob’s Delphi List
Now that we have a Java client
Applet that can show (and update)
To Do notes for a given person, it’s
time to focus on the Delphi server-
side application that stores the
individual notes. For this, we only
need a simple database setup with
a set of strings for each user. Since
I know that not everyone has
access to a WinNT web server that
includes the BDE, we will not
implement the Delphi program
using the BDE, but instead build a
simpler implementation using .INI
files. The layout of the .INI file is the
same for each user:

➤ Figure 2

➤ Figure 1: Standalone version
of BobNotes v0.1.

April 1999 The Delphi Magazine 47

[bob]
password=swart
lines=3
1=Write Under Construction #44
2=Finish 2 C++Builder 4
Unleashed chapters

3=Download Delphi 4
Update Pack #3

The reason why I use a password
field is of course to guard my To Do
notes against illegal updates by
someone else. The lines key
contains the number of lines in the
list, which are numbered from 1 to
the value of lines. A pretty easy
format, but it is sufficient for a fair
amount of users each of which
might have about a dozen To Do
notes.

Two base routines are needed.
One called GetLines to get the To
Do notes from the INI file, and one
SetLines, to assign new To Do
notes and write them to the INI file.
In both cases, the username and
password need to be passed as
arguments too (and the username
and password should be correct,
of course). The two routines are
implemented in a unit called
IniMod, which can be seen as a
replacement DataModule or even
WebModule (but then based on an
INI file, and only the two Get/Set
APIs). See Listing 1 for the details.

Communication
Now that we have the Java client
Applet and the Delphi server-side
application, it’s time to focus on
the communication between the
two. An easy way to communicate

unit IniMod;
interface
uses SysUtils, Classes;
type
ELoginFailed = class(Exception);
procedure GetLines(const User, Passw: String; Lines:
TStrings); // raises ELoginFailed

procedure SetLines(const User,Passw: String; Lines:
TStrings); // raises ELoginFailed

implementation
uses IniFiles;
var IniFile: TIniFile = nil;
procedure GetLines(const User,Passw: String;
Lines: TStrings);

var i: Integer;
begin
if (User <> '') and (IniFile.ReadString(User, 'password',
'') = Passw) then begin
Lines.Clear;
for i:=1 to IniFile.ReadInteger(User,'lines',0) do
Lines.Add(IniFile.ReadString(User,IntToStr(i),''))

end else
raise ELoginFailed.Create('Login failed.')

end {GetLines};
procedure SetLines(const User,Passw: String;
Lines: TStrings);

var i: Integer;
begin
if (User <> '') and (IniFile.ReadString(User, 'password',
'') = Passw) then begin
IniFile.EraseSection(User);
{ reset password }
IniFile.WriteString(User,'password',Passw);
{ linescount }
IniFile.WriteInteger(User,'lines',Lines.Count);
for i:=1 to Lines.Count do
IniFile.WriteString(User,IntToStr(i),Lines[Pred(i)])

end else
raise ELoginFailed.Create('Permission denied.')

end {SetLines};
initialization
IniFile := TIniFile.Create('.\BobNotes.ini');

finalization
IniFile.Free;
IniFile := nil

end.

➤ Listing 1:
IniMod storage unit.

is the Common Gateway Interface
(CGI) protocol where the Java
Applet calls the Delphi server-side
CGI application, passing data on
the URL using the GET protocol,
and interprets the results that are
returned.

Alternatively, we can use TCP/IP
to open a socket between the
Delphi server and Java Applet, and
communicate directly between the
two.

Finally, last time we showed that
CORBA can be used as communi-
cation protocol, which would
mean (in this case) transforming
the Delphi server into a CORBA
server implementing CORBA
methods (and the Java Applet into
a CORBA client, calling these

➤ Above: Figure 3

➤ Right: Figure 4

48 The Delphi Magazine Issue 44

methods). In theory, using JMIDAS
for JBuilder 2, we can also decide
to use DCOM (MIDAS) instead of
CORBA. CORBA (and possibly
DCOM) connections between
Delphi and JBuilder applications
will be covered next time; for now
we focus on ‘low-level’ CGI and
sockets instead.

Delphi CGI
The Delphi server-side application
can be called with three possible
arguments: User=, Password= and
Notes=. The Java Applet can call the
Delphi CGI application in two ways.
If only the username and password
are passed, then the current To Do
notes are returned. If, as well as
User and Password, the Notes vari-
able is also passed, then the To Do
notes on the server are updated
with the value of Notes. In both
cases, an error will be returned if
the Password doesn’t match the
User (and no, there’s still no way to
set or reset a given password).

The Delphi CGI server applica-
tion is implemented in Listing 2,
using the unit DrBobCGI.

Note that the content-type is set
to text/plain, and the actual con-
tent is either OK (after we’ve set the
new To Do notes), or the current
list of To Do notes: one item on
each line.

The Delphi CGI application can
be called directly by the Java
Applet as a URL call, like this:

http://www.drbob42.com/cgi-bin/

CGI.exe?User=Bob&Password=swart

which, since no argument Notes is
passed, will return the current To
Do notes for user Bob with
password swart.

Java CGI
To communicate with the CGI
application from the Java Applet,
we must be able to construct the
URL shown above for both getting
and setting notes on the server.
Luckily Java already contains a
URL class. This class is capable of
storing a URL and eventually opens
a connection to this URL using
streams. So what we have to do
right now is construct a URL
object, which will incorporate the
CGI executable, and add the
username, password and
(optionally) new notes as parame-
ters of this CGI executable. Listing
3 contains the Java method
constructURL to take care of this.

The method constructURL takes
three arguments: username, pass-
word and lines. These three argu-
ments are used to construct the
URL object. If the lines argument
contains no value (is null) we do
not add that part to the URL. A nice
utility method we are using is the
URLEnocder.encode() method. This

method is capable of formatting
any Stringobject to a MIME format
called x-www-form-urlencoded. This
way we can be sure what we are
sending can be understood by the
CGI.exe. The CGI application will
not know the difference between
accessing the application through
a simple browser or through our
Java Applet.

Once we have constructed the
URL it is time to get information
from the URL. We can use the
openStream() method of the URL
class to open a stream to the URL.
This means we are opening a
one-way ‘tunnel’ from the CGI
application to our Applet. Any
output the CGI application will
create will be sent directly to the
Applet. And in our Java Applet we
can collect the data and do with it
what we want. For example show
the notes (being information sent
by the CGI) to the user. The code in
Listing 4 takes care of opening the

program CGI;
{$APPTYPE CONSOLE}
uses DrBobCGI, SysUtils, Classes, IniMod;
var
Notes: TStringList = nil;
User, Password: String;
Get: Boolean;
i: Integer;

begin
writeln('Content-type: text/plain');
writeln;
User := Value('User');
Password := Value('Password');
Notes := TStringList.Create;
Get := Value('Notes') = '';
if not Get then
Notes.Text := Value('Notes');

try
try
if Get then begin
GetLines(User,Password,Notes);
for i:=1 to Notes.Count do writeln(Notes[Pred(i)])

end else begin
SetLines(User,Password,Notes);
writeln('OK')

end
except
on E: Exception do writeln(E.Message)

end
finally
Notes.Free

end
end.

private URL constructURL(String user, String pwd, String lines)
throws MalformedURLException

{
// Create a StringBuffer for a String-like representation of the URL
StringBuffer constructURL = new StringBuffer();
// Add the name of the CGI app
constructURL.append("http://www.drbob42.com/cgi-bin/CGI.exe");
// Start with the parameter part (or GET part) of the CCI app
constructURL.append("?");
// Add the username part
constructURL.append("User");
constructURL.append("=");
// The URLEncoder.encode() method takes care of formatting variables so
// they are ready to be sent to the CGI (replacing spaces with %20, etc.)
constructURL.append(URLEncoder.encode(user));
// Add the password part
constructURL.append("&");
constructURL.append("Password");
constructURL.append("=");
constructURL.append(URLEncoder.encode(pwd));
// Adding the lines part (if not null, else we are already done)
if (lines != null)
{
constructURL.append("&");
constructURL.append("Notes");
constructURL.append("=");
constructURL.append(URLEncoder.encode(lines));

}
// Return the new URL object
return new URL(constructURL.toString());

}

➤ Listing 2: Delphi CGI Server.

➤ Listing 3: Java constructURL

50 The Delphi Magazine Issue 44

private String sendAndReceive(String user, String pwd,
String lines)
throws ConnectionException

{
String result = null;
// Input stream reader for connection to CGI app
BufferedReader in = null;
try {
// Create a URL object based on user and pwd
URL url = constructURL(user, pwd, lines);
// Open a stream connection to the CGI application
in = new BufferedReader(new InputStreamReader(
url.openStream()));

// StringBuffer to store data received from the CGI app
StringBuffer buf = new StringBuffer();
// Line contains a single line received from the CGI app
String line;
// Loop for receiving data from the CGI app until no
// more data available
while ((line = in.readLine()) != null)
{ // Store the received data in the StringBuffer
buf.append(line);
// Add an end-of-line
buf.append("\r\n");

}
// Convert to received data to the result String

result = buf.toString();
}
catch (MalformedURLException mfuex) {
// The URL object isn't correct, so we throw
// a new ConnectionException
throw new ConnectionException(mfuex.getMessage());

}
catch (IOException ioex) {
// Error reading from CGI app, so we throw
// a new ConnectionException
throw new ConnectionException(ioex.getMessage());

}
finally {
// Closing the input stream reader
if (in != null) {
try {
in.close();

}
catch (IOException ioex) {
// Don't handle it

}
}

}
return result;

}

➤ Listing 4: Java CGI Client

stream to the CGI application and
reading data from it.

Two things are important to
notice. First of all we wrap the
stream from the URL in a
BufferedReader object. The
BufferedReader object is optimised
for reading character data and
because we are using only charac-
ter data here it is a good thing to
use this class. The second impor-
tant thing is the loop structure for
reading in the data from the
stream. We are executing a
readLine() method (which returns
everything up to an end of line
symbol) repeatedly until the
response is null. In other words up
to the end of the stream.

To invoke this method from our
Applet is quite easy. If we want to
get data from the server we will
invoke this method with the
username and password of the
user and leave the lines argument
null. And to add new notes to the
server we can invoke the same
method, only this time we will use
the lines argument for the new
notes, see Listing 5.

Sockets
A CGI application is only activated
for each request, and gets termi-
nated right after it has serviced the
request. Of course, an ISAPI DLL
remains in memory, but is still basi-
cally a stateless protocol. Sockets
enable the client and the server to
open a communication ‘channel’
(called socket) and keep it open for
as long as necessary.

// Reading notes from the CGI app
String fromURL = sendAndReceive("Bob", "swart", null);
// Sending new notes to the CGI app
sendAndReceive("Bob", "swart", "99/02/29 - Nonday");

But before we see how to use
sockets for data communication
between two different machines, it
is maybe a good idea to first
explain what sockets are. Basically
a socket is a peer-to-peer commu-
nication endpoint. This endpoint
has a network address and a port
number. Sockets communicate
using TCP/IP and this means we
can use sockets also over the
internet. A socket address consists
of two parts: an IP address (or
name) and a port number. The IP
address is the address of the
machine where the socket will be
set up. For example on our
machine this IP address would be
127.0.0.1, or we can use the name
localhost. A port is the entry point
of the application. A 16-bit number
represents the port number. Well
known services already use up
some of the port numbers avail-
able on a machine, like an HTTP
web server that uses port 80 to
listen for requests. If we are devel-
oping applications with sockets on
our own we don’t want to use these
reserved port numbers. So how do
we know what port numbers can
be used and can’t be used? The

answer can be found within the
SERVICES file in our Windows
folder. This file contains a list of
port numbers which are reserved
and shouldn’t be used by us, to
avoid conflicts.

A pitfall to be aware of when
using sockets is the existence of
firewalls. Firewalls can be set up to
only allow requests for certain
socket port numbers, like port 80
for a web server. This could jeop-
ardise the communication of our
own developed applications,
because the firewall will not allow
the use of other port numbers. So
we need to keep this in mind when
programming with sockets.

Sockets give us total freedom to
communicate between different
applications on different
machines, but in order for the dif-
ferent applications to understand
what is being sent it is important to
define a protocol for the communi-
cation. This protocol describes
what elements will be sent, in
which order, and what to expect in
return. In the CGI example we
already used a pre-defined proto-
col to communicate: HTTP. We will
define (update) a new protocol for

Element Description Text
--
First element: Command PUT, GET
Second element: Username username
Third element: Password password
Fourth element: (optional) Notes the notes

➤ Above: Listing 5 ➤ Below: Listing 6

April 1999 The Delphi Magazine 51

our application so the server can
distinguish between a GET data
request and an ADD data request,
see Listing 6.

The different elements are
separated by a semi-colon (;) and
are sent as a single string of
characters.

Delphi Server Socket
The Delphi TServerSocket compo-
nent (from the Internet tab) can be
used to manage multiple client
connections (like the Java Applet).
A Socket Server application must
be ‘in the air’ at all times, so we’ll
create an empty form with a TMemo
component (to show debug lines of
text) and a single TServerSocket
component. The latter has a few
properties that must be set at
design-time. It’s important to spec-
ify the port number, which is set to
4242 in our case. As ServerType, we
can specify either stNonBlocking or
stThreadBlocking. The latter
spawns a new thread for each
socket connection accepted by the
server socket. We’ll use
stNonBlocking to handle all reading

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ScktComp, StdCtrls;

type
TForm1 = class(TForm)
ServerSocket1: TServerSocket;
Memo1: TMemo;
procedure ServerSocket1Accept(Sender: TObject;
Socket: TCustomWinSocket);

procedure ServerSocket1ClientConnect(Sender: TObject;
Socket: TCustomWinSocket);

procedure ServerSocket1ClientDisconnect(Sender: TObject;
Socket: TCustomWinSocket);

procedure ServerSocket1ClientRead(Sender: TObject;
Socket: TCustomWinSocket);

procedure ServerSocket1ClientWrite(Sender: TObject;
Socket: TCustomWinSocket);

end;
var Form1: TForm1;
implementation
{$R *.DFM}
uses IniMod;
procedure TForm1.ServerSocket1Accept(Sender: TObject;
Socket: TCustomWinSocket);

begin
Memo1.Lines.Add('Client accepted');

end;
procedure TForm1.ServerSocket1ClientConnect(Sender: TObject;
Socket: TCustomWinSocket);

begin
Memo1.Lines.Add('Client connected');

end;
procedure TForm1.ServerSocket1ClientDisconnect(Sender:
TObject; Socket: TCustomWinSocket);

begin
Memo1.Lines.Add('Client disconnected');

end;
procedure TForm1.ServerSocket1ClientRead(Sender: TObject;
Socket: TCustomWinSocket);

const
Sep = ';';

var
i: Integer;
Str: String;
Lines: TStringList;
User,Password: ShortString;

begin
Memo1.Lines.Add('Client read');
Str := Socket.ReceiveText;
Lines := TStringList.Create;
try
Memo1.Lines.Add(Str);
if Pos('PUT',Str) = 1 then begin
{ PUT }
Delete(Str,1,4);
User := Copy(Str,1,Pos(Sep,Str)-1);
Delete(Str,1,Pos(Sep,Str));
Password := Copy(Str,1,Pos(Sep,Str)-1);
Delete(Str,1,Pos(Sep,Str));
Lines.Text := Str;
try
IniMod.SetLines(User,Password,Lines);
Lines.Text := 'OK'

except
on E:Exception do
Lines.Text := E.Message

end
end else begin
{ GET }
Delete(Str,1,4);
User := Copy(Str,1,Pos(Sep,Str)-1);
Delete(Str,1,Pos(Sep,Str));
Password := Str; { strip CR/LF ?? }
Str := ''; { no notes }
try
IniMod.GetLines(User,Password,Lines)

except
on E:Exception do
Lines.Text := E.Message

end
end; { GET }
for i:=0 to Pred(Lines.Count) do
Socket.SendText(Lines[i] + #13#10);

Socket.SendText('END_OF_TRANSMISSION' + #13#10);
finally
Lines.Free

end
end;
procedure TForm1.ServerSocket1ClientWrite(Sender: TObject;
Socket: TCustomWinSocket);

begin
Memo1.Lines.Add('Client write');

end;
end.

and writing over the socket con-
nections asynchronously. Client
connections are handled in a single
execution thread. OnClientRead
and OnClientWrite events are
called when the client socket tries
to send or receive data.

Apart from OnClientRead and
OnClientWrite, we’ll also imple-
ment the OnAccept, OnClientConnect
and OnClientDisconnect event han-
dlers to be able to log when a client
connection is accepted by our
Socket Server, when a connection
is made and when a client is dis-
connected again, respectively. The
OnClientRead event handler is the
most interesting (see Listing 7), as
this is the one receiving the client
request, parsing the Socket.
ReceiveText and sending back the
results (like OK or the contents of
the To Do notes) using the
Socket.SendText method. Note that
at the end of the last
Socket.SendText we need to send
an END_OF_TRANSMISSION token, so
the (Java) client knows that no
more lines (from the To Do list) are
to be expected.

Java Client Socket
Java contains a Socket class we can
use to set up socket connection.
The constructor of the Socket class
takes two arguments: name of the
host machine and the port
number. The Delphi server appli-
cation will be running on a
machine called www.drbob42.com
and will use port number 4242. So
we can use these values as argu-
ments of our socket creation. After
we have created the socket we
create input and output streams
with the sockets. So we are creat-
ing a unique ‘tunnel’ between the
Java Applet and the Delphi
server-side application. We can
use this tunnel to send back and
forth data. And this tunnel will
exist as long as both the client-side
socket and the server-side sockets
are open.

Listing 8 shows the code that
makes sure we open a socket
connection.

We saw earlier that we had to
define a protocol to communicate

➤ Listing 7: Delphi Socket Server.

52 The Delphi Magazine Issue 44

between the client and server over
the socket. So our method respon-
sible for communicating must
construct and use the protocol. We
will notice some similarities
between this method code and the
one we used for the CGI
communication, see Listing 9.

When the protocol is created we
will first check if we want to get
notes from the server or want to
add notes to the server by check-
ing the lines argument. If this argu-
ment is null, we want to get data
else we want to put data on the
server. This command is the first
element of the protocol. Next fol-
lows the proposed delimiter, a
semi-colon. Then the two elements
username and password are added
(each separated by the delimiter).
And finally, if we are putting new
data on the server, we add this data
as the last element.

The protocol we construct is
then sent to the server application
with the out.print()method. Once
the data is sent we can wait for the
response from the server. We will
read in data from the server until
we reach the string END_OF_TRANS-
MISSION, which denotes the end of
the data.

To use this method for commu-
nication we invoke it the same way
we did for the CGI communication,
see Listing 10.

Stuffing...
There’s one potential problem
with sockets. In the OnClientRead
event handler of the Delphi Socket
Server, our code expects to receive

➤ Listing 8: Java Socket Connection.

private String sendAndReceive(String user, String pwd,
String lines)
throws ConnectionException

{
// String to store result
String result = null;
try
{
// Create the "protocol" to be sent to the server
StringBuffer protocol = new StringBuffer();
// If lines is null we only interested in getting notes,
// else we are adding new notes
if (lines != null)
{
protocol.append("PUT");

}
else
{
protocol.append("GET");

}
// The delimiter used between elements
protocol.append(";");
// Username
protocol.append(user);
protocol.append(";");
// Password
protocol.append(pwd);
// We are adding new notes so add those to the protocol
if (lines != null)
{
protocol.append(";");
protocol.append(lines);

}

// Send protocol to the server
out.print(protocol);
out.flush();
// Read response from the server.
// If we are getting notes this will contain notes, else
// a status code.
StringBuffer buf = new StringBuffer();
String line = in.readLine();
boolean reading = true;
while (reading)
{
// If end of transmission reached we will leave the
// loop
if (line.equalsIgnoreCase("END_OF_TRANSMISSION")) {
reading = false;

// Else we continue to add String to the result
}
else
{
buf.append(line);
buf.append("\r\n");
// Read next line
line = in.readLine();

}
}
result = buf.toString();

}
catch (IOException ioex)
{ // Error in reading and writing to socket
throw new ConnectionException(ioex.getMessage());

}
return result;

}

the complete request all in one go.
However, for a PUT with more than
a few different To Do items, we
might not get everything in one
packet, and will need to listen to
two or more OnClientRead events.
This is not implemented at this
time (take a closer look at my
TBSMTP and TBPOP3 components
discussed in Issues 35 and 36 if you
want to see some TClientSocket
implementations that use this
technique).

Apart from this problem, there’s
one more catch using sockets on
WinNT, and that’s the fact that the
ScktSrvr application (from
Delphi4\Bin) must be running
before you can do any communica-
tion using sockets. Just something
to remember in case it doesn’t
work right away...

Conclusions
We’ve seen that we can communi-
cate between Delphi (Server)
Applications and Java (Client)
Applets in different ways, using the
standard CGI protocol or using
sockets. The underlying architec-
ture of Delphi and Java is quite sim-
ilar, as only the implementation
details differ.

Socket socket;
BufferedReader in;
PrintWriter out;
try
{
// Open a socket on www.drbob42.com, port 4242
socket = new Socket("www.drbob42.com", 4242);
// Create the input and output streams
in = new BufferedReader(new inputStreamReader(socket.getInputStream()));
out = new PrintWriter(socket.getOutputStream());

}
catch (IOException ioex)
{
// Something went wrong, throw ConnectionException object
throw new ConnectionException(ioex.getMessage());

}

➤ Listing 9: Java Socket Client.

// Reading notes from the socket app
String fromURL = sendAndReceive("Bob", "swart", null);
// Sending new notes to the socket app
sendAndReceive("Bob", "swart", "99/02/29 - Nonday");

➤ Listing 10

April 1999 The Delphi Magazine 53

Next Time
Next time, we take BobNotes a little bit further, and
wrap it up as a Delphi CORBA Server Object. We will
then generate a Java CORBA Client Object to communi-
cate with the Delphi Server, and cover the pitfalls along
the way. Finally, we’ll tell a little bit more about the
DCOM for Java bridge called JMIDAS, so stay tuned...

Bob Swart (aka Dr.Bob, visit www.drbob42.com) is a
technical consultant and webmaster using Delphi,
JBuilder and C++Builder for Bolesian and a freelance
technical author.

Hubert A Klein Ikkink (aka Mr.Haki) has been using
Java and JBuilder since they were invented and has
wide commercial experience in the development and
deployment of Java applications. Hubert is the
webmaster for Mr.Haki’s JBuilder Machine at
www.drbob42.com/JBuilder. He writes and speaks
regularly on Java and JBuilder.

	BobNotes
	Mr.Haki’s Java Applet
	Dr.Bob’s Delphi List
	Communication
	Delphi CGI
	Java CGI
	Sockets
	Delphi Server Socket
	Java Client Socket
	Stuffing...
	Conclusions
	Next Time

